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Mode I Field Intensity Factors of Infinitely Long Strip In
Piezoelectric Media
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We consider the problem of determining the singular stresses and electric fields in a pi­
ezoelectric ceramic strip containing a Griffith crack under in-plane normal loading within the
framework of linear piezoelectricity. The potential theory method and Fourier transforms are
used to reduce the problem to the solution of dual integral equations, which are then expressed
to a Fredholm integral equation of the second kind. Numerical values on the field intensity
factors are obtained, and the influences of the electric fields for PZT-6B piezoelectric ceramic

are discussed.
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1. Introduction
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Nomenclature --------------
a : A half of crack length

cu, C13, C33, C44 : Elastic moduli measured III a
constant electric field

du- d33 : Dielectric permittivities mea-
sured at a constant strain

: Electric displacement vector
: Piezoelectric constants
: Electric field vector
: A half of thickness of the strip
: Field intensity factor
: Electric potential
: Potential function

Because of its coupling characteristic between
electric and mechanical deformation, piezoelectric
materials have been widely used in transducers
and sensors. Due to the intrinsic brittle property,
however, the stress concentration caused by
mechanical and/or electric load may induce the
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initiation and propagation of crack under loading
conditions. In order to predict the service lifetime
of piezoelectric ceramic components, we must
identify the damage and the fracture behavior of
the materials. The increasing attention to the
study of crack problems in piezoelectric materials
in the last decade has led to a lot of significant
works being published.

Of particular interest, Pak (1990) obtained the
closed form solutions for an unbounded pi­
ezoelectric medium under anti-plane loading by
employing a complex variable approach. Park
and Sun (1995) obtained the closed form solu­
tions for all modes of fracture for an infinite
piezoelectric medium containing a center crack
subjected to a combined mechanical and electrical
loading. Shindo et al. (1996, 1997) obtained the
solution for the infinite strip parallel or perpen­
dicular to the crack under anti-plane loading
using integral transform method. Recently, Kwon
and Lee (2000) obtained the solution of pi­
ezoelectric rectangular media with a center crack
under anti-plane shear loading.

In contrast to the success of the anti-plane
(mode III) crack problem researches mentioned
above, there are relatively few papers concerning
in-plane (mode I) crack problem due to the
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where

Eliminating kl and kz in Eq. (8), we obtain a
cubic algebra equation of A.,

"Z,I.-~+ ()2</Ji -0 '-1 2 3 (14)
V i'f/i- oxz Jif - , z-, , ,

(8)

(9)

CI3 + C44 + C44kl+ elsk2

e33kl - d33kz A.
elS+ (!31 + elskl - duk2

J2</J
+ (eIS+e31)k2] Jzz =0, (5)

. ft
[ (C13 + C44) + C44kl + elskz] Jx2

ft+ (e33kl+ e33kz) o~ =0, (6)

J2</J
[ (els + e31) + elskl - dukz] Jxz

ft+ (e33kl- d33kz) ozz =0, (7)

The terms ii</J/Jxz and oZ</J/J~ are not identi­
cally equal to zero. Therefore, a non-trivial solu­
tion of Eqs. (5) - (7) is to exist only in the follow­
ing case,

C44 + (C13 + C44) kl+ (els + e31) kz
Cu

C33kl+e33kz

where

A = ers + C44du , (10)

B = (2cl3erS - c44e§1 + 2cl3elSe31

- 2CUelSe33+ ef3dll+2CI3C44dll (II)
- cucssdu>: CUC44d33) / Cu,

C= [C33 (els + e31)z_2 (CI3+ C44) (eIS+ e31) e33

+ (2c44e1S + cUe33) e33+ C33C44du (12)

- (ef3+ 2CI3C44 - CUC33) d33]/ Cll'

D = - (d3+ c33d33) C44/ Cu (13)

The three roots of Eq. (9) are denoted by A.i (i
= I, 2, 3) and A.I is assumed to be a positive real
number, A.z and A.3 are to be either positive real
numbers or a pair of conjugate complex roots
with positive real parts.

Corresponding to three roots, there are three
potential functions </Ji (i= I, 2, 3) and each of
them must satisfy the following equation,

complexity of analysis. The purpose of the present
work is to conduct a systematic study of the in
-plane crack problem of a transversely isotropic
solid (class 6 mm or hexagonal) by using a
potential theory and an integral transform
method. In this paper, we consider the crack
problem in a piezoelectric ceramic strip under in­
plane normal loading. The numerical results for
the field intensity factors are shown graphically
for PZT-6B piezoelectric ceramic.

In a Cartesian coordinates (x, z), poled with
z-axis, the governing equations can be written as
follows,

2. Potential Theory Method and
Governing Equations

ilu ilu ilw
Cu Jx2 + C44 J~ + (e13+ C44) oxoz

+ (eIS+e31) fxlz =0, (I)

()2w J2W ( ) ()2u
C44--a:xz+C33azr+ Cl3 + C44 JxJz

J2¢ ft-
+ elS Jx2 + e33 J~ -0, (2)

J2W J2W J2 U
elS Jx2 + e33 J~ + (eiS + C31) JxJz

02¢ ()2¢ _
-du Jx2 -d33 J

Z2
-0, (3)

where u i;x, z), iot», z)', ¢, (eu, C!3, C33, C44)'
(du, d33) and (eIS' e3h e33) are the displacement
in x-direction, the displacement in z-direction,
the electric potential, the elastic moduli measured
in a constant electric field, the dielectric per­
mittivities measured at a constant strain and the
piezoelectric constants, respectively.

We introduce the following potential function
which could transform Eqs. (I) - (3) into the
familiar differential equations,

..». -~-~u- a ' W-kl::l ' ¢-k2::l ' (4)x az uZ

where </J (x, z) is the potential function
introduced, and kl and k2 are unknown constants.
Putting Eq. (4) into Eqs. (1)-(3), we have the
following equations,

J2</J
Cu~ + [C44 + (e13+ C44) kl

uX
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2 (~3 k.
¢=7i}0 tik[A(s)sinh(szi)

+ B, (s) cosh (SZ;)[cos (SX) ds - bsz,
(27)

21~ 1(/J;(x, Zi) =- -[A (s) cosh (SZi)
11: 0 S

+Bi(S)sinh(SZi) [cos (SX) ds,
(24)

O"xz=-~ (~s±/MA(s)sinh(sz;)
11:}0 j=1

+B, (s) cosh (SZi) ]sin (sx) ds, (30)

Dz=~ (~s±/'i[A i (s) cosh (SZi)
11:}0 i=1

+B;(s) sinh (SZi) [cos (se) ds +do,

(31)

(33)

(32)C 33k li +e33k2i
,li C13,

C44 (1+kli ) + e1s k2i

IX:

u=- ;l~~[A(s)cosh(szi)

+B, (s) sinh (SZi) [sin (sx) ds, (25)

w= ; l~~ ~[A(s)sinh(sz;)

+B, (s) cosh (SZi) [cos (sx) ds +asz,
(26)

2 r: 3 k·
EX=7i}o stik[A(s)sinh(sz;)

+Bi(s)cosh(szi)]sin(sx)ds, (28)

O"z=~ (~s±ai[A(s)cosh(szi)
11:}o i=1

+B, (s) sinh (SZ;)[cos (sx) ds +Co,

(29)

O"z(x, h) =O"z(x, - h) =0"0' (16)

Dst», h) =Dz(x, -h) =Do, (17)

O"xz(x, 0) =0, (18)

O"xz(x, h) =0, (19)
Ex(x, Q+)=Ex(x, 0-), (Os.x<a), (20a)
Dsi», O+)=Dz(x, 0-), (Os.x<a), (20b)

¢(x, 0) =0, (O<x<oo), (21)

O"z(x,O)=O, (Os.x<a), (22)

uii;x, 0) =0, (a<x<oo). (23)

By applying a Fourier transform to Eq. (14),
we can find the displacements, electric fields,
stresses and electric displacement components in
the forms,

where

z

Fig. 1 Infinite piezoelectric strip with a crack sub­
jected to the combined in-plane electric and
mechanical loads

3. Problem Statement and Method of
Solution

Consider a piezoelectric medium in the form of
an infinitely long strip containing a finite crack
subjected to the combined in-plane mechanical
and electric loads as shown in Fig. 1. A set of
cartesian coordinates (x, z) is attached to the
center of the crack. The piezoelectric ceramic strip
poled with z-axis occupies the region (-oo<x

< 00, - hs.Z s.h) and is thick enough in the
y-direction to allow a state of plane strain. The
crack is situated along the -r as.x s:a; z=O.

Because of the assumed symmetry in geometry
and loading, it is sufficient to consider the prob­
lem for Os.x<oo and z:Z:O only.

How to impose the electrical boundary condi­
tions along the crack surfaces in piezoelectric
fracture modelling is controversial. The imperme­
able boundary condition on the crack surface was
widely used in the previous works. This condition
shows that the electric displacement intensity
factor depends on the electric load, and the energy
release rate is always negative only in the pres­
ence of electric loading, irrespective of its sign.
These contradict the available experimental
observations (Park and Sun, 1995; Tobin and
Pak, 1993).

In fact, cracks in piezoelectric media will be
filled with vacuum or air. This requires that both
the normal components of electric displacement
and the tangential component of the electric field
will be continuous across the crack faces.

Based on this concept, the boundary conditions
are written in the forms,
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(34) N3= (- k21- kl2k21+k22+k llk22) .;Jt;/L),

(46)

where

To solve the dual integral equations, we define
M (s) in the form,

(47)

L) = kl2k21- kl3k21- kllk22
+ kl3k22+kllk23- k12k23 •

l~sfds)M(s)cos(sx)ds=- ~ Co, (O:S::x<a),

(48)

;:ooM(s)cos(sx)ds=O, (a<x<oo), (49)

aIAI(s) +a2A2(s) +Cl:lA3(s)
(aINI+a2N2+Cl:lN3)M(s) .

(50)

Therefore the unknowns A; (s) (i = 1, 2, 3) can
be determined in terms of M (s) from Eqs. (36)­

(37) and (40).

Using the mixed boundary conditions, Eqs.
(22) and (23), we obtain the following dual
integral equations,

and A;(s), B;(s) (i=l, 2) are the unknowns to

be solved, and aD, bo, cO=c33aO-e33bo and do=
e33aO+ d33bo are unknown constants, which will
be determined from the far field loading condi­
tions.

By applying the far field loading conditions
(16)-(17), the relations between A;(s) and B;
(s) as well as the constants aD, bo, Co and do are
evaluated as follows,

ao d33(Jo +e33Do b - e33 (Jo +c33Do (35)
c33d33 +e1' 0 c33d33+e1,

Co= (Jo, do = Do,

alcosh (ski) Al (s) +a2cosh (sk2)A 2(s)
+Cl:lcosh(sk3)&(s) = - alsinh(skl) BI (s)

(36)

- a2sinh (sk2)B 2(s) - Cl:lsinh (Sk3)B 3(s) ,

ncosh(skl) Al (s) + r2cosh(sk2) A 2(s)
+ r3cosh (sk3)A 3(s) = - rlsinh (ski) B I(s)

(37)

- r2sinh (sk2) B 2(s) - r3sinh (Sk3)B 3(s) ,

where

(38)k;=k/.rx:;, i=l, 2, 3.

Also from Eqs. (18) - (21), we obtain,

/3IBI(s) + /32B2(s) + /33B3(s) =0, (39)

/31sinh(ski) Al (s) + /32sinh(Sk2) A 2(s)

+ /33sinh(sk3)& (s) = - /3lcosh (ski) B I(s)
(40)

- /32cosh (sk2)B 2(s) - /33cosh (sk3) /33 (s),

j¥;BI(S) + )¥;B2(S) + 1~ B 3(s) =0. (41)

It is convenient to use the following definition,

M(s) == !tBI(S) + )¥;B2(S) + ltB3(s)

(42)

From Eqs. (39), (41) and (42), we can find B;

(s) in the forms,

B I(s) =NIM (s), B 2(s) =N2M (s).

B 3 (s) =N3M (s), (43)

where

N I = (- k22- kl3k22+k23+ k I2k23) .[r;/ L),

(44)

N2= (k21+k13k21- k23- k llk23) ;A;/ L), (45)

(51)

where ]o(s~) is the zero-order Bessel function of
the first kind.

Inserting Eq. (51) into Eqs. (48) and (49), we
can find that the auxiliary function f5 (~) is given
by the following Fredholm integral equation of
the second kind,

Q(S) +;:IL (S , H)Q(H)dH=fS,

(52)

where

L(8, H) =./SH ;:00S[jl (5/ a) -1]

]o(SH)]o(SS)dS,
(53)

( :;;~~E_~ ;';:~), (54)
nco

Q(H) = __2_!Hf5(r;).
nco
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4. Field Intensity Factors

The mode I stress intensity factor, K(J is

defined and determined in the form,

K(J=limJ27r(x-a) (Jz(x, 0) =cofiwJJ(I).
x-a+

the material constant CD and the applied mechan­

ical load (Jo but not on the applied electrical load.

These are well agreed with the results of Gao and

Fan (1999).

In case of h --+ co, the field intensity factors for

an infinite piezoelectric ceramic can be obtained

in the form,

(55) (61)

where

Extending the traditional concept of stress

intensity factor to other field variables (Pak,

1990) and considering four possible far field

conditions, we have

and K€, K E and K D are strain intensity, electric

field intensity and electric displacement intensity

factor, respectively.

From Eq. (56), it is noted that the uniform

electric load has no influence on the field singu­

larities under constant stress loading, and the

electric displacement intensity factor depends on
5. Conclusions

These are also agreed with the results of Gao

and Fan (1999).

To examine the effect of electromechanical

interactions on the field intensity factors, equa­

tion (52) is computed numerically by Gaussian

quadrature formula. We consider PZT-6B

ceramic which material properties are as follows,

Elastic constants (1010 N1m2) :

Cll = 16.8, C33= 16.3, c44=2.71, C13=6.0,

Piezoelectric constants (C/m2) :

e1s=4.6, e31 = -0.9, e33=7.1,

Dielectric permittivity (10- 10 F1m):

dl1=36, d33=34.

Figure 2 displays the variation of the normal­

ized field intensity factors, K'I cfcofii(i, against

the alh values. They increase with the increase of

the alh ratio.

(59)

(57)

(58)

(60)

1.3

s
~
Q'" 1.2

c.r....
:.:

1.1

The electroelastic crack problem in a transver­

sely isotropic piezoelectric ceramic strip under in­

plane normal loading was analyzed by the intro­

duction of potential functions and the integral

transform approach. The traditional concept of

linear elastic fracture mechanics is extended to

include the piezoelectric effects and the results are

expressed in terms of the field intensity factors .

Especially, the electric loadings have no influence

on the field singularities under constant stress

loading.
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